Hem
Iter-anläggningen i Frankrike där forskningen kring fusion ska gå vidare. (Daniel Cole / AP)

Milstolpe nådd i jakten på fusionsenergi: ”Jättekliv”

Europeiska forskare har nått ett genombrott när det gäller försöken att utveckla energi genom fusion, rapporterar flera medier. Under ett försök vid anläggningen Joint European Torus (Jet) i Storbritannien lyckades forskarna få ut 59 megajoule under en reaktion som pågick i fem sekunder.

Det är mer än dubbelt så mycket som det tidigare rekordet som sattes 1997 och motsvarar en energimängd som räcker för att koka 60 kastruller med vatten, skriver Financial Times.

Fusion är den process som ger stjärnor dess energi. Att skapa fungerande, praktiskt användbar fusionsenergi på jorden skulle radikalt förändra mänsklighetens tillgång till billig, ren energi.

Chefen för den brittiska atomenergimyndigheten, Ian Chapman, beskriver det lyckade försöket som en milstolpe.

”Resultaten har gjort att vi har tagit ett jättekliv mot att lösa en av de största vetenskapliga och ingenjörsmässiga utmaningarna genom alla tider”, säger han i ett uttalande.

bakgrund
 
Fusionsenergi
Wikipedia (sv)
Fusionsenergi (vardagligt vätekraft) är energi som frigörs vid sammanslagning av lätta atomer. Energiproduktionen i solen och andra huvudseriestjärnor bygger på fusion. Fusionskraftverk är en hypotetisk framtida form av kärnkraftverk, som skulle använda fusionsenergi. Fördelen med fusionskraftverk framför traditionella kärnkraftverk vore att processen inte behöver lämna efter sig lika starkt radioaktiva ämnen som vid fission. Problemet med fusion är att extremt höga temperaturer måste kunna kontrolleras, vilket inte lyckas med dagens teknik. Istället för att klyva tunga kärnor (fission) kan energi frigöras genom fusion (sammanslagning) av lätta atomkärnor med processer som är besläktade med energiproduktionen i solen och andra huvudseriestjärnor. Inga sådana kraftverk finns ännu i kommersiell drift men det pågår forsknings- och utvecklingsarbete eftersom de potentiella fördelarna är mycket stora. Mest har man intresserat sig för följande reaktion: D + T → 4He + n + 5.2 x 10-13JStörre delen av den frigjorda energin utgörs av kinetisk energi hos den neutron som frigörs. Ett sätt att åstadkomma den här fusionen av deuterium och tritium är att upphetta atomerna till extremt hög temperatur (över 100 miljoner grader) och högt tryck (8 atm). Eftersom inga material tål sådana temperaturer försöker man stänga inne den upphettade plasman i ett magnetfält inuti ett torusformad tank. Det kan vara en tokamak eller en stellarator. Än så länge klarar man bara detta under mycket kort tid. Neutronerna är opåverkade av magnetfältet och träffar tankens väggar som är täckt av en filt (en. blanket) som tar upp energin och där värmen förs bort med lämpligt kylmedium, till exempel vattenånga eller en gas som helium. En annan metod är tröghetsinnesluten fusion, att utsätta små kapslar med deuterium och tritium för intensiva laser-, röntgen- eller partikelpulser varvid fusionsprocesser kan starta. Hittills har det också krävts tillförsel av mer energi för att köra processen än vad man kunnat utvinna ur den. Ett kommersiellt utnyttjande av fusionskraften ligger i bästa fall troligen mellan 30 och 50 år in i framtiden. Risken för katastrofala olyckor liknande exempelvis Tjernobylolyckan är obefintlig eftersom mängden bränsle i reaktorn är väldigt liten jämfört med ett konventionellt kärnkraftverk. Man räknar med att ingen som befinner sig utanför en fusionsanläggning kan behöva bli utsatt för strålning; strålningsskyddet behövs enbart för dem som arbetar på verket. D-T-reaktionen ger inte upphov till radioaktivt avfall men material i reaktorkonstruktionen kan bli radioaktivt. Med lämpligt val av konstruktionsmaterial blir det radioaktiva avfallet förhållandevis kortlivat (upp till cirka 100 år). Tritium kan produceras i reaktorn från litium-6 och litium-7 varvid också energi produceras. Deuterium finns i havsvatten i stor mängd och tillsammans med tillgängligt litium har man beräknat att fusionsenergi baserat på dessa båda isotoper skulle räcka för mänskligheten under praktiskt taget obegränsad tid (en miljon år). Samtidigt ifrågasätter vissa experter starkt det realistiska i att producera tritium på detta sätt.
 
Joint European Torus
Wikipedia (en)
The Joint European Torus, or JET, is an operational magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility is a joint European project with a main purpose of opening the way to future nuclear fusion grid energy. At the design stage JET was larger than any such machine then in production. JET was built with the hope of reaching scientific breakeven where the "fusion energy gain factor" or Q =1.0. It began operation in 1983 and spent most of the next decade increasing its performance in a lengthy series of experiments and upgrades. In 1991 the first experiments including tritium were made, making JET the first reactor in the world to run on the production fuel of a 50–50 mix of tritium and deuterium. It was also decided to add a diverter design to JET, which occurred between 1991 and 1993. Performance was significantly improved, and in 1997 JET set the record for the closest approach to scientific breakeven, reaching Q = 0.67 in 1997, producing 16 MW of fusion power while injecting 24 MW of thermal power to heat the fuel.Between 2009 and 2011, JET was shut down to rebuild many of its parts, to adopt concepts being used in the development of the ITER project in Saint-Paul-lès-Durance, in Provence, southern France. In December 2020, a JET upgrade commenced using tritium as part of its contribution to ITER, and in June 2021 it will begin fusing a deuterium-tritium fuel.

Gå förbi betalväggar!

Omni Mer låser upp en mängd artiklar. En smidig lösning när du vill fördjupa dig.

Omni är politiskt obundna och oberoende. Vi strävar efter att ge fler perspektiv på nyheterna. Har du frågor eller synpunkter kring vår rapportering? Kontakta redaktionen